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We show that any k-regular bipartite graph with 2n vertices has at least

<(k_1)kvl>n

perfect matchings (1-factors). Equivalently, this is a lower bound on the permanent
of any nonnegative integer » x n matrix with each row and column sum equal to k.
For any k, the base (k —1)* '/k* "2 is largest possible. € 1998 Academic Press

1. INTRODUCTION

In this paper we show that any k-regular bipartite graph with 2n vertices

has at least
k__l)k—l n
=) .

perfect matchings. (A perfect-matching or 1-factor is a set of disjoint edges
covering all vertices.) This generalizes a result of Voorhoeve [11] for the
case k =3, stating that any 3-regular bipartite graph with 2»n vertices has at
least (3)" perfect matchings.

The base in (1) is best possible for any &: let o, be the largest real num-
ber such that any k-regular bipartite graph with 2n vertices has at least
(o)™ perfect matchings; then

(k —1 )k -1
Ay = —7(—_2——
Here, the inequality < was shown in [10], where moreover equality was
conjectured for all k. That this conjecture is true is thus the result of the
present paper. For completeness, we sketch the argument showing < in(2)
in Section 3 below.
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The result can be equivalently stated in terms of permanents (for the
definition of a permanent, see Section 4 below): the permanent of any non-
negative integer n x n matrix with each row and column sum equal to & is
at least (1).

The result of Voorhoeve [11] for the case k=3 answered a question
posed by Erddés and Rényi [3]: is there an ¢> 0 such that the permanent
of any nonnegative integer n x n matrix with all row and column sums
equal to 3 is at least (1 +¢)"? So Voorhoeve’s result shows that one can
take e= 1.

Voorhoeve’s result was obtained before Van der Waerden’s permanent
conjecture was resolved, in 1981. This conjecture states that the permanent
of any doubly stochastic n x n matrix is at least n!/n". (A matrix is doubly
stochastic if it is nonnegative and each row and column sum is equal to 1.)
Van der Waerden’s conjecture was proved by Falikman [4] and a sharper
version by Egorychev [2].

Van der Waerden's bound implies that for any k, n, the permanent of
any nonnegative integer nxn matrix 4 with all row and column sums
equal to k is at least

k"n!
==, (3)

n

since the matrix (1/k)A is doubly stochastic. Bound (3) is at least (k/e)".
Since 3/e> 1, it implies the Erdés-Rényi conjecture. Also, Bang [1] and
Friedland [5] showed the Erdds-Rényi conjecture by proving that any
doubly stochastic n x n matrix has permanent at least e " Since

(k=1 _k
NGRS @

for each k, also the bound (1) implies that the permanent of any doubly
stochastic n x n matrix is at least e ™",

The proof of Voorhoeve [11] for the case k=3 is very elegant and
simple (see, for instance, Lovasz and Plummer [6, pp. 313-314]. Compared
to the simplicity of Voorhoeve’s method and of the general statement, our
method is quite complicated. Yet, the method forms a generalization of
Voorhoeve’s method. In fact, it generalizes bound (1) to weighted bipartite
graphs, so as to enable induction. Although it leads to slightly complicated
formulas, they all are quite natural and precise for our purposes.
Nevertheless, the question remains if a simpler proof could be given.

Another question is whether there is a common generalization of the
Van der Waerden bound and the bound given in this paper. For any k, n,
let p(k, n) be the minimum number of perfect matchings in any k-regular
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bipartite graph with 2n vertices. Then the Van der Waerden bound states
that for each n one has

. 1
infp“\’n)=ﬁ—', (5)
keN k" n"
while our bound states that for each k& one has
. k—1)c!
nf p(k, n)‘/"=(—7{k—J7—- (6)

So both bounds are best possible, in different asymptotic directions. It
might be possible to derive a sharper lower bound for p(k, n) with the
methods of the present paper.

We give our main theorem and its proof in Section 2, after which we
derive bound (1) in Section 3. The theorem also implies a bound on the
permanent of certain matrices derived from doubly stochastic matrices,
which we discuss in Section 4. Finally, in Section 5 we observe that our
bound also gives tight bounds for the number of l-factorizations (edge-
colourings) of regular bipartite graphs conjectured in [9].

In this paper, a bipartite graph G = (V, E) can have multiple edges. For
any vertex v, the set of edges incident with v is denoted by J(v). For any
function w: E — Z ., we generally put w, for w(e) (e E), and

wF)= Y w, (7)
eekF

for any FSE. For any e¢e E, y° denotes the function y* E— {0, 1} with
x(f)=11if and only if f =e.

2. THE MAIN THEOREM AND PROOF

We now formulate and prove a theorem that implies bound (1). In this
section we fix k. Let G=(V, E) be a bipartite graph, and let w: E—~Z .
For any perfect matching M in G define

v, M) = T wolk—w,). (8)
ee M
Next let
t(w) =Y ¢(w, M), (9)

M
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where the summation extends over all perfect matchings M in G. So (w)

is equal to the number of perfect matchings in the graph obtained from G

by replacing each edge e by w.(k —w,) parallel edges (assuming w, < k).
Call w k-regular if w(d(v)) =k for each ve V.

THEOREM 1. For any bipartite graph G=(V,E) and any k-regular
wE—>Z,,

(w) ZkMI=ETT (k—w,). (10)

ek

Proof. We prove a generalization. Call a function w: E—~Z, a
1-weighting if either w is k-regular or there exist two vertices ¢ and v such
that w(d(t))=k—1, w(d(u))=k+1, and w(d(v))=k for all v#t, u
(Necessarily, ¢ and u belong to the same colour class of G.)

Call w: E—~Z, a —l-weighting if there exist two vertices ¢ and u such
that w(d(1))=w(d(u))=k —1 and w(d(v)) =k for all v+ 1, u. (Necessarily,
t and u belong to different colour classes of G.)

Note that any a-weighting can be obtained as follows from a k-regular
w: E—Z . Choose a simple path P in G, with edges e, .., ¢,, in this order
(possibly t=0), such that w,>0 if e=e; for odd i<t Now reset
w,i=w,— 1 if e=e; for some odd i<? and w,:=w,+ 1 if e=¢, for some
even i<t Then the resulting w is an a-weighting with o= (—1)".

Let xe{+1, —1}. For any a-weighting w define

k 4+«
k+1

Blw) = KV=IECTT (k= w,). (11)

eeE

We show that for any bipartite graph G=(V, E), any ae {+1, —1}, and
any «x-weighting w: £ — Z , one has

(w) = flw). (12)

This implies the theorem.

Suppose (12) does not hold. Choose a graph G = (V, E) for which there
exist a, w violating (12), with |E| minimal. Then G is connected, since
otherwise a component of G will give a smaller counterexample.

Having G, we choose «, w violating (12) so that the quotient

(W)

Blw)

(13)

is minimized (this is possible, as f(w)>0). We call any w attaining this
minimum minimizing.
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If possible, we choose w, among all minimizing i, such that w is
k-regular; otherwise, we choose w such that the two vertices v with
w(d(v)) # k have minimum distance in G. (So the path P described above
1s minimized.)

Since we can delete edges ¢ with w,=0, we know that w,> 1. Since
Slw) =0 if w,=k for some edge ¢, we know that w,<k — 1. So it follows
that k= 2.

For any edge e let

t(w, e):= Y @O, M). (14)
Mse
So for each vertex v one has
Y tlw,e)=1(w). (15)
eed(v)

Let u be a vertex satisfying w(d(u)) =k + «, if it exists, and let u be any
vertex otherwise. (So « =1 and w(d(u)) =k in the latter case.) Then w —ay*
is a —a-weighting for any edge e €d(u).

CramM 1. For each edge e € d(u),

W,

k—2w,+ Le)<alk—2w, +a
o w, +a) T(w, e) <ol )k-l-oc

(w). (16)
If equality holds, then w—oy® is minimizing.

Proof. Since w —oy® is a —o-weighting and since w is minimizing we
have

T(n;):————'—’-v—e—v——‘f(‘t'). (17}

Moreover, we can express t{w —ox®) in terms of t(w) and t(i, ¢):

(we—oc)(k——we+oc)_ 1> O e)

T(w —ax®) =t(w) +< wlk —w,)

k—2w,
=1'(nr')—oa—‘;z—k—m_‘:_—'e-o;r(w,e), (18)

Combining (17) and (18) gives:



I-FACTORS IN REGULAR BIPARTITE GRAPHS 127

a(k—2w,+ o) (W, e)

= (k—w ) (t(w) —7(w — ay®))

Swelk =) T0w) <1 _k=a li:_‘_‘iii‘>

k4o k—w,

(k? + ok —kw, —ouw,) — (k2 —a® —kw, + o)

=we(k_we) ‘L'(W) (k+0()(k—lt )

ok —2w,+ a)
= ) k— ’ 1) ———.————é————_—_
welk —we) Tw) (k+a)(k—w,)
w,

+ o

=alk —2w,+a) Z T(w). (19)

As equality in (19) implies equality in (17), this shows Claim 1. [|
From this we derive:

CLamm 2. There exists an edge e € 0(u) satisfying

W

l
) 2_. s . y‘ ——_e—— 1),
W, 2(A + o) and o-T(n e)>ak+a1(u) (20)
Proof. Suppose not. Then by Claim 1,
(. €) S 8 —=— 7(w) (21)
o T(wW, e \ak+ar(n 2

for each eed(u) (since if w, <3(k +a), (16) amounts to (21)). Hence

w, w(d(u))
w-T(w)=a Yy t(woe)<a Yy (w) =« 7(w)
eed(u) eed(u) ]\-1-0(. /\'+O(
o), (22)

since o - w(d(u)) < alk +a). So equality holds throughout in (22), implying
w(d(u))=k +o and implying equality in (16) for each ¢ed(u). So by
Claim [, w —oay® is minimizing for each ¢ €d(u).

Now let ¢ be the first edge of the shortest path connecting v with
the vertex vs#u satisfying w(d(v))=k—1. (w is not k-regular since
w(d(u)) =k +o.) Then replacing w by w—oy® we obtain a minimizing
—a-weighting which is either k-regular or has a shorter distance between
the vertices v with w(J(v)) # k, contradicting our assumption. [
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Let us fix edge ¢ as in Claim 2, and let e connect vertex v with vertex v
(thus fixing v from here on in this proof). Let F be the set of edges f#e
incident with v. Then

Cramm 3. wy<k —w, for each f € F.

Proof. For if not, then w,+w,>k, implying that w(d(v))=k (since
w(d(v)) < k), and that e and f are the only edges incident with ». So
we=k—w,.

If ¢ and fare not parallel, we can contract them and obtain a graph G’
with a smaller number of edges and an a-weighting w'. Then by the mini-
mality of G we know 7(w') = fi(w'), and hence

(W) =w W, (W) = wow f(w') = f(w), (23)

contradicting the fact that w gives a counterexample.
If ¢ and f are parallel and form the whole graph, then «=1 and
t(w)=wulk —w,) +wek—wg)=2w,w,. So

(w)=2w,w = w,w,= B(w), (24)

again contradicting the fact that we have a counterexample.

If e and f are parallel and do not form the whole graph, then
w(d(u)) =k + 1 for the vertex u adjacent to v. Hence a = 1. Then deleting
u and v, and the edges incident with «# and v, we obtain a graph G' with
— l-weighting w’. Since G is a counterexample with |E| smallest, we know
that 7(w’) = S(w'). However, 1(w)=2w,w,t(w') and hence

k+1k—1

t(w) =2w,w,T(w') = 2w, w (W) = 1 wew e B(w') = Bw), (25)

contradicting the fact that w gives a counterexample. ||
Since w, > i(k + «), Claim 3 implies
w,<3(k—a); equivalently, k — 2w ,—a > 0. (26)
So we can define for any feF,

k—2w,+a wek—w,

A= (27)

- wok—w,) k—2w,—a

By (26) and (20) we have that 1,>0 for each f'e F. Moreover, one has:

Ciam 4. 3, p A<l
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Proof. Since this is trivial if k — 2w, +a =0 (in which case 4,=0 for all
feF), we can assume k — 2w, +a <0. So we must prove

Ak —w »(k—w
;;f(? Wy < _{te(’) ne)‘ (28)
for k=2w,—a k—=2w,+a

To prove this, first observe that the function h(x) = x(k — x)/(k —2x — o)
satisfies A(0)=0 and is strictly increasing and strictly convex for
x < $(k—a), since

_ (k=2x)(k—2x—0a)+2x(k — x)

Fix) (k=2x—a)?

(k? — 4kx +4x2 — ak + 2ox) + (2kx — 2x?)

(k=2x—a)?
_k?—=2kx 4+2x% —ok +2ax  3(k—=2x—a)’ 4+ 3(k? —o?)
(k—2x—a)? - (k—2x—a)?
1 3k =a?)

T2 k= 2x—a)? (29)

and therefore 4'(x) is positive and strictly increasing for x <3(k —a).
Since 3 ;c p wp=w(d(v)) —w, <k —w,, the strict monotonicity and strict
convexity of /2 imply that

we(k —w,) (k—w,)w, _ Wk —w,)
Jer k—=2w,—a k=2k—w)—a —k+2w,—a

(30)

(the inequality is strict because of Claim 3), which is (28). |}

We now finish the proof by deriving a contradiction. For each
feF,w—oax*+ay’ is an a-weighting. Hence, since w is minimizing, we
have:

Blw — oy +ay”) ) = (k—w,+o)(k—w,—a)

Slw) (k—w )k —wp)

T(w).
(31)

z'(w—oc)(e+oc)(f)>

Moreover, we can express r(\v-oc)("-i—ocxf ) in terms of 7(w), 7(w, ¢), and

(w, f):
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C— )k —w
r(\t'—oc)(‘“+oc)(f)=r(;t’)+(m" Gl “"+a)——l>r(w,e)

wk—w,)

+((wf+ a)(k —w,—a)

welk —wp) - l> we /)

—alk —=2w
=17(w)+ ————-——oif‘e( k :::; %) (w, e)

I T
ke =2wp=o) . (32)
wf(k— W)

Combining (31) and (32) then gives a bound for z(w, f) in terms of 7(w)
and t(w, ¢}

. ‘/-,=M’i:lf_’

k—2w,—o (t(w —ax +ay’) —t(w)) —ad,t(w, €)

S Wk —wp) <(k —w, +o)(k—w,y—~o)

= ___1 RO l .
k—2wf—oc (k_“’e)(k—l4’f) >T(H) oAy T(w, €)

gl —=wy) b, —wp—a)
‘k-—?_wf——:x (k—w )k —wy)

t(w) —ade (W, e)

o welw, —w,—a)
(k=2w,~a)(k—w,)

T(w) —ad 1w, e). (33)

Hence, using (15), (20), and Claim 4, we obtain the following contradic-
tion:

wt(w)=o-t(w,e)+ Y ol f)
Ser

wlw, — W, —a)

Zo-1t(w, e)+ Z ox- <(k

T(W)——)yf‘[(w,@)>
fer

—2w,— a)(k —w,)

=ay e = Wy a) (W) +oc<l -5 ).f> t(w, e)

Sor (K= )k =2w—a) ek

welw, —w,—a) ’
> fgﬁ. (k—w )k =2w,—a) w)

+a<l-f§["/1f> k?qr(w)?oc-f(w). (34)
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The last inequality can be seen as follows. First we have for each fe F,

We(w, —we—a) W, k—w,+a
—A =W, .
(k—we)(k—~2wf——oc) Tk +a ‘j(k—we)(k+ot)

(35)

as follows directly from the definition (27) of As. (Indeed,

W, —wy—a) w,
(k—w‘,)(k—ij-—oc) Tk +a

o owplw,—w—a) n'f(k—?.we+oc)(k—u'f)
T k=w )k =2w—a)  (k—w,)(k—2w,—x)(k +x)

(we=wy—o)(k +a) + (k=2w,+a)(k—w))
(k= w )k =2w,—a)(k +x)

= W/

(kw, —kw,— ok 4+ v, — o, — o2y + (k2= 2kw, + ok — kw,+ 2w, wp— o)
(k—w )k =2w,—a)(k +2)

=Wy

k2 —kw,— 2w+ 2w w,— 2ow,+ aow, — o2
(k—w )k —=2wp—a)(k +«)

= H'f

— (k—=2w,—a)(k—w,+a)
- 1f(k —w )k —=2w,—a)(k +x)

k—w,+x
=W m——t—— 36
" (k—we)(k-i-ac)') (36)
Now (35) gives, using the inequality ow(d(v)) = ok,
- ( we(w, —w,—a) PP >
for (k—-we)(k~2wf—o<) Tk +a
_ k—w,+a Z o (k—w,+a)w(d(v))—w,)
= (k—w )k +a) feF I (k—w )k +a)
(k—w,+a)k—w,) < W, >
> = C=a|l— , 37)
Tkt Tkra (

implying the last inequality in (34). As (34) is a contradiction, there is no
counterexample to (12). Il
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3. DERIVATION OF BOUND (1)

COROLLARY la. Any k-regular bipartite graph G=(V, E) with 2n ver-

tices has at least
(k _ 1 )k-—l n
<—k7:z“—> (38)

Proof. Define w: E—~Z, by w,=1 for each ee E. So w is k-regular in
the sense of Section 2. Now t(w) is equal to (k —1)” times the number
of perfect matchings in G (since w,(k—w, =k—1 for each edge e).
Moreover,

perfect matchings.

__1\k\n
k=18 T (k——we)=<g(k—k—_l—z)->. (39)

ecE
So Theorem | implies the corollary. |

We sketch a proof that the base in (38) is best possible; that is, we show
(2). Fix k and n. Let IT be the set of permutations of {1, kn}. For any
nell, let G, be the bipartite graph with vertices u,, .., u,, v;, .., v, and
edges e, ..., €,. where

e;connects Uryu  and  Uppme (40)

for i=1, .., kn. (Here [ x7] denotes the upper integer part of x.) So G, is a
k-regular bipartite graph with 2n vertices. Hence, by definition of ay,

a(G) = ()", (41)

where o( G,) denotes the number of perfect matchings in G,.
On the other hand,

Y. a(G,)=k"k"n((k—1)n)l. (42)

nell

This can be seen as follows. The left-hand side is equal to the number of
pairs (7, /), where 7 is a permutation of {1, .., kn} and where I is a subset
of {1, .., kn} such that {e,|ie [} forms a perfect matching in G,; that is,
such that

(1) In{jk—k+1,.., jk}|=1 foreach j=1,..,n, )
(i) =) n{jk—k+1, .., jk}|=1 foreach j=1,..,n
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Now by first choosing I satistying (43)(i) (which can be done in k” ways),
and next choosing a permutation 7 of {1, ..., kn} satistying (43)(ii) (which
can be done in k"n!((k—1)n)! ways), we obtain (42).

Since |IT| = (kn)!, (41) and (42) imply

K2nl((k — 1)n)\
s () “

yielding (2), with Stirling’s formula.

4. CONSEQUENCES ON PERMANENTS

Our result can also be expressed in terms of permanents. Recall that for
any nxn matrix 4 = (q; ;), the permanent per 4 is defined as

per A:=3 T[] 0> (45)

Q=1

where the summation extends over all permutations 7 of {1, .., n}. (For
background on permanents, see Minc [7, 8].)
Then we have:

CoROLLARY 1b. Let A=(a,; ;) be a nonnegative integer nxn matrix with
each row and column sum equal to k. Then

. 1Vk—1I\n
per 4 ><(—IL—Z;‘1_15—> . (46)

Proof. Make a bipartite graph G with vertex set u,, .., u,, Uy, ..., U,,
where v; and v; are connected by «; ; edges (parallel if «; ;>2). Then
per(4) is equal to the number of perfect matchings in G, and hence

Corollary la implies the present corollary. [

Our more general Theorem | implies another theorem on permanents.
For any real number « let d:=a(l — ), and for any matrix 4 =(a; ;) let

A:=(a, . (47)

CoroOLLARY lc.  For any doubly stochastic nxn matrix A =(a, ;),

::

per 4>

i

[T(I—q . (48)
=1

1J

I
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Proof. By continuity, we can assume that A is rational. Hence there
exists a natural number k such that kA is an integer matrix, with all row
and column sums equal to k.

Let G=(V, E) be the complete bipartite graph with colour classes
{uy, s 1y} and {oy, .., v,}. Let w: £~ Z, be defined by w, := ka, ; for the
edge ¢ connecting u; and v;(i, j=1,..,n). So w is k-regular, and hence by
Theorem 1,

kper A=t(w) 2k 1E [T (k—w)=k*T] [1 (1=a;,,. (49)
ceE i=1 j=1
implying the corollary. J
In fact, this corollary can be seen to be equivalent to Theorem 1. We

have tried to find a direct proof of it, based on continuity and differen-
tiability, but we did not succeed.

5. 1-FACTORIZATIONS

Qur bound also implies a tight bound on the number of l-factoriza-
tions of regular bipartite graphs. Let G=(V, E) be a bipartite graph.
A l-factorization of G 1is a partition of E into perfect matchings
M, ... M, (“factors”). A 1-factorization can also be considered as an edge
colouring.

The following was conjectured in [9] (and proved for all & of the
form 293%);

CoroLLARY 1d. The number of 1-fuctorizations of a k-regular bipartite
graph with 2n vertices is at least

12\ n
Gl )

Proof. By Corollary la, the first factor M, can be chosen in at least

k—1 k—1\n
(=1 s

ways. Deleting the edges in M, we obtain a (k — I)-regular bipartite graph,
having (by induction) at least

(k— 1)1 \"
((k—l)""‘) >2)

1-factorizations. Multiplying (51) and (52) we obtain (50). |
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Again, by an argument similar to that of Section 3, one shows that the
base in (50) is best possible (cf [9]).
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